\(\int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [349]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 71 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 (a A-b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (A b+a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

-2*(A*a-B*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*(A*b+B*
a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*A*sin(d*x+c)/d/
cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {3047, 3100, 2827, 2720, 2719} \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 (a B+A b) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}-\frac {2 (a A-b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[In]

Int[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(-2*(a*A - b*B)*EllipticE[(c + d*x)/2, 2])/d + (2*(A*b + a*B)*EllipticF[(c + d*x)/2, 2])/d + (2*a*A*Sin[c + d*
x])/(d*Sqrt[Cos[c + d*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \int \frac {a A+(A b+a B) \cos (c+d x)+b B \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {\frac {1}{2} (A b+a B)-\frac {1}{2} (a A-b B) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+(A b+a B) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+(-a A+b B) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {2 (a A-b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 (A b+a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {2 a A \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.44 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.90 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \left ((-a A+b B) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+(A b+a B) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+\frac {a A \sin (c+d x)}{\sqrt {\cos (c+d x)}}\right )}{d} \]

[In]

Integrate[((a + b*Cos[c + d*x])*(A + B*Cos[c + d*x]))/Cos[c + d*x]^(3/2),x]

[Out]

(2*((-(a*A) + b*B)*EllipticE[(c + d*x)/2, 2] + (A*b + a*B)*EllipticF[(c + d*x)/2, 2] + (a*A*Sin[c + d*x])/Sqrt
[Cos[c + d*x]]))/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(245\) vs. \(2(121)=242\).

Time = 7.12 (sec) , antiderivative size = 246, normalized size of antiderivative = 3.46

method result size
default \(\frac {4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a -2 A b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a -2 B a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(246\)
parts \(\frac {2 \left (A b +B a \right ) \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}+\frac {2 B b \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a A \left (-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(343\)

[In]

int((a+cos(d*x+c)*b)*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*(2*A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*a-A*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(
1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell
ipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a-B*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ellipti
cF(cos(1/2*d*x+1/2*c),2^(1/2))+B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1
/2*d*x+1/2*c),2^(1/2))*b)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 185, normalized size of antiderivative = 2.61 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2 \, A a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + \sqrt {2} {\left (-i \, B a - i \, A b\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (i \, B a + i \, A b\right )} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (-i \, A a + i \, B b\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + \sqrt {2} {\left (i \, A a - i \, B b\right )} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{d \cos \left (d x + c\right )} \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

(2*A*a*sqrt(cos(d*x + c))*sin(d*x + c) + sqrt(2)*(-I*B*a - I*A*b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(
d*x + c) + I*sin(d*x + c)) + sqrt(2)*(I*B*a + I*A*b)*cos(d*x + c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*
sin(d*x + c)) + sqrt(2)*(-I*A*a + I*B*b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*
x + c) + I*sin(d*x + c))) + sqrt(2)*(I*A*a - I*B*b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4
, 0, cos(d*x + c) - I*sin(d*x + c))))/(d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

Giac [F]

\[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} {\left (b \cos \left (d x + c\right ) + a\right )}}{\cos \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate((a+b*cos(d*x+c))*(A+B*cos(d*x+c))/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((B*cos(d*x + c) + A)*(b*cos(d*x + c) + a)/cos(d*x + c)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 1.63 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.35 \[ \int \frac {(a+b \cos (c+d x)) (A+B \cos (c+d x))}{\cos ^{\frac {3}{2}}(c+d x)} \, dx=\frac {2\,A\,b\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,a\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,A\,a\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

[In]

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x)))/cos(c + d*x)^(3/2),x)

[Out]

(2*A*b*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*a*ellipticF(c/2 + (d*x)/2, 2))/d + (2*B*b*ellipticE(c/2 + (d*x)/2
, 2))/d + (2*A*a*sin(c + d*x)*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)
^2)^(1/2))